ar X iv : m at h - ph / 0 31 00 07 v 1 7 O ct 2 00 3 Green functions of the Dirac equation with magnetic - solenoid field

نویسندگان

  • S. P. Gavrilov
  • D. M. Gitman
  • A. A. Smirnov
چکیده

Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2 + 1 and 3 + 1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 11 00 12 v 1 9 O ct 2 00 1 Functional Equations and Poincare Invariant Mechanical Systems

We study the following functional equation that has arisen in the context of mechanical systems invariant under the Poincaré algebra:

متن کامل

ar X iv : m at h - ph / 0 31 00 10 v 1 8 O ct 2 00 3 Obstructions , Extensions and Reductions . Some applications of Cohomology ∗

After introducing some cohomology classes as obstructions to orientation and spin structures etc., we explain some applications of cohomology to physical problems, in especial to reduced holonomy in M and F -theories.

متن کامل

ar X iv : m at h - ph / 0 61 00 39 v 1 1 7 O ct 2 00 6 Harmonic analysis on a Galois field and its subfields

Complex functions χ(m) where m belongs to a Galois field GF (p ℓ), are considered. Fourier transforms , displacements in the GF (p ℓ) × GF (p ℓ) phase space and symplectic Sp(2, GF (p ℓ)) transforms of these functions are studied. It is shown that the formalism inherits many features from the theory of Galois fields. For example, Frobenius transformations are defined which leave fixed all funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008